β-Asarone (1) belongs to the group of naturally occurring phenylpropenes like eugenol or anethole. Compound 1 is found in several plants, e.g., Acorus calamus or Asarum europaeum. Compound 1-containing plant materials and essential oils thereof are used to flavor foods and alcoholic beverages and as ingredients of many drugs in traditional phytomedicines. Although 1 has been claimed to have several positive pharmacological effects, it was found to be genotoxic and carcinogenic in rodents (liver and small intestine). The mechanism of action of carcinogenic allylic phenylpropenes consists of the metabolic activation via cytochrome P450 enzymes and sulfotransferases. In vivo experiments suggested that this pathway does not play a major role in the carcinogenicity of the propenylic compound 1 as is the case for other propenylic compounds, e.g., anethole. Since the metabolic pathways of 1 have not been investigated and its carcinogenic mode of action is unknown, we investigated the metabolism of 1 in liver microsomes of rats, bovines, porcines, and humans using (1)H NMR, HPLC-DAD, and LC-ESI-MS/MS techniques. We synthesized the majority of identified metabolites which were used as reference compounds for the quantification and final verification of metabolites. Microsomal epoxidation of the side chain of 1 presumably yielded (Z)-asarone-1',2'-epoxide (8a) which instantly was hydrolyzed to the corresponding erythro- and threo-configurated diols (9b, 9a) and the ketone 2,4,5-trimethoxyphenylacetone (13). This was the main metabolic pathway in the metabolism of 1 in all investigated liver microsomes. Hydroxylation of the side chain of 1 led to the formation of three alcohols at total yields of less than 30%: 1'-hydroxyasarone (2), (E)- and (Z)-3'-hydroxyasarone (4 and 6), with 6 being the mainly formed alcohol and 2 being detectable only in liver microsomes of Aroclor 1254-pretreated rats. Small amounts of 4 and 6 were further oxidized to the corresponding carbonyl compounds (E)- and (Z)-3'-oxoasarone (5, 7). 1'-Oxoasarone (3) was probably also formed in incubations with 1 but was not detectable, possibly due to its rapid reaction with nucleophiles. Eventually, three mono-O-demethylated metabolites of 1 were detected in minor concentrations. The time course of metabolite formation and determined kinetic parameters show little species-specific differences in the microsomal metabolism of 1. Furthermore, the kinetic parameters imply a very low dependence of the pattern of metabolite formation from substrate concentration. In human liver microsomes, 71-75% of 1 will be metabolized via epoxidation, 21-15% via hydroxylation (and further oxidation), and 8-10% via demethylation at lower as well as higher concentrations of 1, respectively (relative values). On the basis of our results, we hypothesize that the genotoxic epoxides of 1 are the ultimate carcinogens formed from 1.