Objective: To validate our earlier observation that 11 chemoresistance-associated mRNAs are molecular markers of poor overall survival in ovarian serous carcinoma.
Methods: Ovarian serous carcinomas (n=112) and solid metastases (n=63; total=175) were analyzed for mRNA expression of APC, BAG3, EGFR, S100A10, ITGAE, MAPK3, TAP1, BNIP3, MMP9, FASLG and GPX3 using quantitative real-time PCR. mRNA expression was studied for association with clinicopathologic parameters and survival. Tumor heterogeneity was assessed in 20 cases with >1 specimen per patient. APC, BAG3, S100A10 and ERK1 protein expression by immunohistochemistry was analyzed in 58 specimens (38 primary carcinomas, 20 metastases).
Results: BAG3 (p=0.013), TAP1 (p=0.014), BNIP3 (p<0.001) and MMP9 (p=0.036) were overexpressed in primary tumors, whereas S100A10 (p=0.027) and FASLG (p=0.006) were overexpressed in metastases. Analysis of patient-matched primary carcinomas and metastases showed overexpression of APC (p=0.022), MAPK3 (p=0.002) and BNIP3 (p=0.004) in the former. In primary carcinomas, higher APC (p=0.003) and MAPK3 (p=0.005) levels were related to less favorable chemoresponse. Higher S100A10 (p=0.029) and MAPK3 (p=0.041) levels were related to primary chemoresistance. Higher BAG3 (p=0.026) and APC (p=0.046) levels in primary carcinomas were significantly related to poor overall survival in univariate, though not in multivariate survival analysis. S100A10 protein expression was related to poor chemoresponse (p=0.002) and shorter overall (p=0.005) and progression-free (p<0.001) survival, the latter finding retained in multivariate analysis (p=0.035).
Conclusions: Our data provide evidence of heterogeneity in ovarian serous carcinoma and identify APC, MAPK3, BAG3 and S100A10 as potential biomarkers of poor chemotherapy response and/or poor outcome in this cancer.
Keywords: Chemotherapy response; Metastases; Ovarian serous carcinoma; Quantitative PCR; Survival; Tumor heterogeneity.
Copyright © 2015 Elsevier Inc. All rights reserved.