We developed a single step, cation-exchange reaction that produces air-stable PbSe quantum dots (QDs) from ZnSe QDs and PbX2 (X = Cl, Br, or I) precursors. The resulting PbSe QDs are terminated with halide anions and contain residual Zn cations. We characterized the PbSe QDs using UV-vis-NIR absorption, photoluminescence quantum yield spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and transmission electron microscopy. Solar cells fabricated from these PbSe QDs obtained an overall best power conversion efficiency of 6.47% at one sun illumination. The solar cell performance without encapsulation remains unchanged for over 50 days in ambient conditions; and after 50 days, the National Renewable Energy Laboratory certification team certified the device at 5.9%.
Keywords: PbSe QDs; cation exchange; halide passivation; quantum dots; solar cells.