This paper reports the enantioseparation ability of a pyridino-18-crown-6 ether-based chiral stationary phase [(S,S)-CSP-1]. The enantiomeric discrimination of chiral stationary phase (S,S)-CSP-1 was evaluated by HPLC using the mixtures of enantiomers of various protonated primary aralkylamines [1-phenylethylamine hydrogen perchlorate (PEA), 2,3-dihydro-1H-inden-1-amine (1-aminoindan), 2,2'-(1,2-diaminoethane-1,2-diyl) diphenol (HPEN)] and perchlorate salts of α-amino acid esters [alanine benzyl ester (Ala-OBn), phenylalanine benzyl ester (Phe-OBn), phenylalanine methyl ester (Phe-OMe), phenylglycine methyl ester (PhGly-OMe), glutamic acid dibenzyl ester (Glu-diOBn), and valine benzyl ester (Val-OBn)]. The best enantioseparation was achieved in the case of PEA. The high enantioselectivity was rationalized by the strong π-π interaction of the extended π system of the aryl-substituted pyridine unit.
Keywords: Chiral stationary phase; Crown ether; Enantiomeric separation; HPLC; Pyridine.
Copyright © 2015 Elsevier B.V. All rights reserved.