Eco-friendly carbon-nanodot-based fluorescent paints for advanced photocatalytic systems

Sci Rep. 2015 Jul 23:5:12420. doi: 10.1038/srep12420.

Abstract

Fluorescent carbon nanomaterials, especially zero-dimensional (0D) carbon nanodots (CDs), are widely used in broad biological and optoelectronic applications. CDs have unique characteristics such as strong fluorescence, biocompatibility, sun-light response, and capability of mass-production. Beyond the previous green CD obtained from harmful natural substances, we report a new type of fluid-based fluorescent CD paints (C-paints) derived from polyethylene glycol (PEG; via simple ultrasound irradiation at room temperatures) and produced in quantum yields of up to ~14%. Additionally, C-paints possess a strong, UV- and visible-light-responsive photoluminescent (PL) property. Most especially, C-paints, by incorporation into a photocatalytic system, show additional roles in the emission of fluorescent light for activation of TiO2 nanoparticles (NPs) and the resultant detoxification of most organic dyes, thus further enabling embarkation in advanced water purification.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carbon / chemistry*
  • Catalysis / radiation effects
  • Fluorescent Dyes / chemical synthesis*
  • Green Chemistry Technology / methods*
  • Light
  • Materials Testing
  • Paint*
  • Photochemistry / methods*
  • Quantum Dots / chemistry*
  • Quantum Dots / ultrastructure

Substances

  • Fluorescent Dyes
  • Carbon