Dryland rivers have considerable flow variability, producing complex ecosystems, processes, and communities of organisms that vary over space and time. They are also among the more vulnerable of the world's ecosystems. A key strategy for conservation of dryland rivers is identifying and maintaining key sites for biodiversity conservation, particularly protecting the quantity and quality of flow and flooding regimes. Extreme variability considerably challenges freshwater conservation planning. We systematically prioritised wetlands for waterbirds (simultaneously for 52 species), across about 13.5% of the Murray-Darling Basin (1,061,469 km2), using a 30-year record of systematic aerial surveys of waterbird populations. Nine key wetlands in this area, primarily lakes, floodplains, and swamps, consistently contributed to a representation target (80%) of total abundances of all 52 waterbird species. The long temporal span of our data included dramatic availability (i.e., booms) and scarcity (i.e., busts) of water, providing a unique opportunity to test prioritisation at extremes of variation. These extremes represented periods when waterbirds were breeding or concentrating on refugia, varying wetland prioritisation. In dry years, important wetlands for waterbirds were riverine and lacustrine (12 wetlands) but this changed in wet years to lacustrine and palustrine (8 wetlands). Such variation in ecosystem condition substantially changes the relative importance of individual wetlands for waterbirds during boom and bust phases. Incorporating this variability is necessary for effective conservation of Murray-Darling Basin waterbirds, with considerable generality for other similarly variable systems around the world.