Objective: To explore the molecular mechanism of exocrine immune inflammatory injury of Sjögren's Syndrome and the intervention of Banxia Qinlian Decoction (BQD).
Methods: Totally 18 female NOD mice were randomly divided into the model group, the positive drug group, and the BQD group, 6 in each group. Six female BALB/c mice were recruited as a blank control group. Mice in the blank control group and the model group were gavaged with deionized water at the daily dose of 0.1 mL/10 g body weight. Tripterygium Tablet was administered by gastrogavage to mice in the positive group at the daily dose of 10 mg/kg. BQD was administered by gastrogavage to mice in the BQD group at the daily dose of 60 g crude drugs/kg. After 12 weeks of medication, mice were sacrificed. Their eyeballs were excised and blood collected. Tissues of bilateral parotids and submandibular glands were kept. mRNA transcriptional levels of IL-17, IL-6, type 3 muscarinic acetylcholine receptors (M3R), aquaporin protein-5 (AQP5) were detected by RT-PCR. Expression levels of M3R and AQP5 protein were detected by Western blot. Protein expression levels of IL-17 and IL-6 were detected by ELISA.
Results: Compared with the normal group, mRNA transcriptional levels and protein expression levels of IL-17, IL-6, M3R, and AQP5 were significantly up-regulated in the model group (P < 0.01). Compared with the model group, mRNA transcriptional levels and protein expression levels of IL-17, IL-6, M3R, and AQP5 were significantly down-regulated in the positive drug group and the BQD group with statistical difference (P < 0.01, P < 0.05). Compared with the BQD group, mRNA-transcriptional levels of IL-17, IL-6, and M3R, as well as M3R and AQP5 protein expression levels were significantly down-regulated in the positive drug group (all P < 0.01).
Conclusion: The molecular mechanism of BQD in inhibiting SS exocrine neurotoxic injury might be possibly related to regulating Th17/IL-17 immune inflammatory way.