Acoustic tweezers for studying intracellular calcium signaling in SKBR-3 human breast cancer cells

Ultrasonics. 2015 Dec:63:94-101. doi: 10.1016/j.ultras.2015.06.017. Epub 2015 Jun 26.

Abstract

Extracellular matrix proteins such as fibronectin (FNT) play crucial roles in cell proliferation, adhesion, and migration. For better understanding of these associated cellular activities, various microscopic manipulation tools have been used to study their intracellular signaling pathways. Recently, it has appeared that acoustic tweezers may possess similar capabilities in the study. Therefore, we here demonstrate that our newly developed acoustic tweezers with a high-frequency lithium niobate ultrasonic transducer have potentials to study intracellular calcium signaling by FNT-binding to human breast cancer cells (SKBR-3). It is found that intracellular calcium elevations in SKBR-3 cells, initially occurring on the microbead-contacted spot and then eventually spreading over the entire cell, are elicited by attaching an acoustically trapped FNT-coated microbead. Interestingly, they are suppressed by either extracellular calcium elimination or phospholipase C (PLC) inhibition. Hence, this suggests that our acoustic tweezers may serve as an alternative tool in the study of intracellular signaling by FNT-binding activities.

Keywords: Acoustic tweezers; Fibronectin; High-frequency ultrasound transducer; Intracellular calcium elevation; SKBR-3 breast cancer cells.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Breast Neoplasms / metabolism
  • Cell Separation / instrumentation
  • Equipment Design
  • Fibronectins
  • Humans
  • Micromanipulation / instrumentation*
  • Microspheres*
  • Signal Transduction*
  • Transducers
  • Tumor Cells, Cultured
  • Ultrasonics / methods*

Substances

  • Fibronectins