3, 4, 9, 10-perylenetetracarboxylic dianhydride (PTCDA) organic nanostructures possess extraordinary electronic and optoelectronic properties. However, it remains a challenge to achieve patterned growth of PTCDA nanowire (NW) arrays for integrated device applications. Here, we demonstrated the high-density, large-area, uniform, and cross-aligned growth of single-crystalline PTCDA NW arrays by using Au nanoparticles (NPs) as the growth templates. The high surface energy of Au NPs led to the cross-aligned growth of organic NWs, enabling the growth of PTCDA NW arrays with any desirable patterns by pre-patterning the Au films on a Si substrate. The PTCDA NW arrays as field emitters show good performance with a large emission current density and high emission stability. Furthermore, photodetectors based on PTCDA NW arrays were constructed via a simple in-situ growth approach, which exhibited high sensitivity to a wideband light ranging from 400-800 nm and surpassed the individual NW-based photodetectors in terms of higher photocurrent and faster response speed. Successful applications of PTCDA NW arrays in field emission and photodetectors show a great potential application of organic NW arrays in future efficient electronic and optoelectronic devices.