Parental history of chronic pain has been associated with self-reported pain in adolescent offspring. This suggests that there may be neurobiological mechanisms associated with pain heritability. Because emotional circuitry is an important component of pain processing and may also influence cognition, we used functional magnetic resonance imaging to examine affective processing and cognitive control using an Emotional Go/NoGo task in youth with (FH + Pain, n = 8) and without (FH - Pain, n = 8) a parental history of chronic pain (mean age = 14.17 ± .34 years). FH + Pain youth had widespread reductions in brain activity within limbic and visual processing regions during processing of positively valenced emotional stimuli, as well as reduced frontoparietal response while processing negatively valenced emotional stimuli compared with their peers. In addition, during inhibition within a positive emotional context, FH + Pain youth had reduced cognitive control and salience-related brain activity. On the other hand, default mode-related brain response was increased during inhibitory control within a negative emotional context in these adolescents compared with their peers (P/α < .05). The current findings indicate differences in both emotional processing and cognitive control brain response in FH + Pain compared with FH - Pain youth, suggesting that both affective and executive functioning pathways may be important markers related to the intergenerational transmission of pain. Perspective: This is the first study to examine neurobiological markers of pain risk in adolescents with a family history of chronic pain. These findings may aid in the identification of neural phenotypes related to vulnerability for the onset of pain in at-risk youth.
Keywords: Chronic pain; cognitive control; emotion; family history; youth.
Copyright © 2015 American Pain Society. Published by Elsevier Inc. All rights reserved.