Purpose: To examine the intra-examination repeatability of proton density fat fraction (PDFF) and T1 and T2 of liver water and fat as estimated by a novel multi-repetition time (TR)-echo time (TE) (1) H magnetic resonance spectroscopy (MRS)-stimulated echo acquisition mode (STEAM) sequence that acquires 32 spectra for a range of TRs and TEs in single breath-hold.
Materials and methods: Sixty-seven subjects undergoing liver MRI examinations at 3T had three multi-TR-TE sequences acquired consecutively in a single session. This sequence was designed to allow accurate estimation of T1 and T2 of both water and fat, as well as PDFF, in a single breath-hold. A standard long-TR, multi-TE sequence was also acquired to allow comparison of estimated PDFF. Regression and interclass correlation (ICC) analyses were performed.
Results: There was strong agreement between PDFF estimated by the multi-TR-TE and long-TR, multi-TE sequences (slope 0.997; intercept -0.03; R = 0.997). The multi-TR-TE sequence had high repeatability for estimating PDFF (ICC = 0.999), water T2 (ICC = 0.920), water T1 (ICC = 0.845), and fat T2 (ICC = 0.760), and moderate repeatability for estimating fat T1 (ICC = 0.556).
Conclusion: A novel multi-TR-TE sequence can estimate PDFF and water and fat T1 and T2 in a single breath-hold. Refinement may be needed to improve repeatability for fat T1 estimation.
Keywords: NAFLD; NASH; magnetic resonance spectroscopy; relaxation.
© 2015 Wiley Periodicals, Inc.