One of the most common pathological changes in Alzheimer's disease (AD) brain is the large number of amyloid β (Aβ) peptides accumulating in lesion areas. Ginsenosides are the most active components extracted from ginseng. Ginsenoside Rd (GRd) is a newly discovered saponin that has a stronger pharmacological activity than other ginsenosides, especially in neuroprotection. Here we examined the neuroprotective effects of GRd against neuronal insults induced by Aβ25-35 in primary cultured hippocampal neurons. A 10μM GRd treatment significantly prevented the loss of hippocampal neurons induced by Aβ25-35. In addition, GRd significantly ameliorated Aβ25-35-induced oxidative stress by decreasing the reactive oxygen species (ROS) production and malondialdehyde (MDA) level, and increasing the levels of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px); which is similar in treatments with 10μM of probucol (PB) and 100μM of edaravone (EDA). Moreover, our present study demonstrated that GRd significantly enhanced the expression of Bcl-2 mRNA, and decreased the expressions of Bax mRNA and Cyt c mRNA. GRd also downregulated the protein level of cleaved Caspase-3 compared to controls. These results highlighted the neuroprotective effects of GRd against Aβ25-35-induced oxidative stress and neuronal apoptosis, suggesting that this may be a promising therapeutics against AD.
Keywords: Amyloid β peptide; Apoptosis; Ginsenoside Rd; Hippocampal neurons; Oxidative stress.
Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.