Biosynthesis of 2-deoxysugars using whole-cell catalyst expressing 2-deoxy-D-ribose 5-phosphate aldolase

Appl Microbiol Biotechnol. 2015 Oct;99(19):7963-72. doi: 10.1007/s00253-015-6740-9. Epub 2015 Jun 24.

Abstract

2-Deoxy-D-ribose 5-phosphate aldolase (DERA) accepts a wide variety of aldehydes and is used in de novo synthesis of 2-deoxysugars, which have important applications in drug manufacturing. However, DERA has low preference for non-phosphorylated substrates. In this study, DERA from Klebsiella pneumoniae (KDERA) was mutated to increase its enzyme activity and substrate tolerance towards non-phosphorylated polyhydroxy aldehyde. Mutant KDERA(K12) (S238D/F200I/ΔY259) showed a 3.15-fold improvement in enzyme activity and a 1.54-fold increase in substrate tolerance towards D-glyceraldehyde compared with the wild type. Furthermore, a whole-cell transformation strategy using resting cells of the BL21(pKDERA12) strain, containing the expressed plasmid pKDERA12, resulted in increase in 2-deoxy-D-ribose yield from 0.41 mol/mol D-glyceraldehyde to 0.81 mol/mol D-glyceraldehyde and higher substrate tolerance from 0.5 to 3 M compared to in vitro assays. With further optimization of the transformation process, the BL21(pKDERA12) strain produced 2.14 M (287.06 g/L) 2-deoxy-D-robose (DR), with a yield of 0.71 mol/mol D-glyceraldehyde and average productivity of 0.13 mol/L·h (17.94 g/L·h). These results demonstrate the potential for large-scale production of 2-deoxy-D-ribose using the BL21(pKDERA12) strain. Furthermore, the BL21(pKDERA12) strain also exhibited the ability to efficiently produce 2-deoxy-D-altrose from D-erythrose, as well as 2-deoxy-L-xylose and 2-deoxy-L-ribose from L-glyceraldehyde.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacterial Proteins / chemistry
  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism*
  • Catalysis
  • Cloning, Molecular
  • Escherichia coli / genetics
  • Escherichia coli / metabolism*
  • Fructose-Bisphosphate Aldolase / chemistry
  • Fructose-Bisphosphate Aldolase / genetics
  • Fructose-Bisphosphate Aldolase / metabolism*
  • Gene Expression
  • Kinetics
  • Klebsiella pneumoniae / enzymology*
  • Ribosemonophosphates / biosynthesis*
  • Substrate Specificity

Substances

  • Bacterial Proteins
  • Ribosemonophosphates
  • 2-deoxyribose 5-phosphate
  • Fructose-Bisphosphate Aldolase