Background: Polydatin (PD), a monocrystalline and polyphenolic drug isolated from a traditional Chinese herb (Polygonum cuspidatum), is protective against mitochondrial dysfunction and has been approved for clinical trials in the treatment of shock. However, whether the administration of PD has a therapeutic effect on multiple-organ dysfunction syndrome (MODS) requires investigation.
Material and methods: MODS was induced in Sprague-Dawley rats via hemorrhage and ligation and puncture of cecum-induced sepsis. The rats were divided into three groups as follows: MODS + PD, MODS + normal saline, and a control group (no treatment). Survival time, blood biochemical indexes, and histopathologic changes in various organs were evaluated; serum oxidative stress (advanced oxidative protein products [AOPPs]) and proinflammatory cytokines (tumor necrosis factor-α, interleukin 1β, and interleukin 6) were assayed using enzyme-linked immunosorbent assay. Apoptosis-related protein expression (B-cell lymphoma-2 [Bcl-2] and Bax) was assayed by immunohistochemical and Western blotting methods, whereas caspase-3 activity was assayed by spectrophotometry.
Results: PD improved organ function, prolonged survival time, and reduced MODS incidence and serum levels of AOPPs and proinflammatory cytokines. It also decreased Bax levels and caspase-3 activity and increased Bcl-2 levels in the kidney and liver.
Conclusions: PD may serve as a potential therapeutic for MODS, as it suppresses oxidative stress, inhibits inflammatory response, attenuates apoptosis, and protects against mitochondrial dysfunction.
Keywords: Apoptosis; Inflammation; Multiorgan dysfunction syndrome; Oxidative stress; Polydatin.
Copyright © 2015 Elsevier Inc. All rights reserved.