Older adults better maintain eccentric strength relative to isometric strength, as indicated by a higher ratio of eccentric:isometric torque as compared with younger adults. The effect of increasing angular velocities (>200°/s) on the age-related maintenance of eccentric strength has not been tested and thus it is unknown whether the eccentric:isometric ratio is velocity dependent in old age. The purpose of this study was to investigate eccentric strength of the ankle dorsiflexors over a large range of lengthening angular velocities in young and older men. Isometric neuromuscular properties were assessed on a HUMAC NORM dynamometer. Nine young (∼24 years) and 9 older (∼76 years) healthy men performed maximal voluntary eccentric contractions at angular velocities of 15-360°/s. Despite near full voluntary activation (>95%), the older men were ∼30% weaker than the young men for isometric strength (P < 0.05). Across all lengthening velocities, older men had a greater eccentric:isometric ratio than young men (P < 0.05). Additionally, there was a velocity dependence of strength in both young and older men: eccentric strength increased as velocity increased up to 120°/s (P < 0.05) and plateaued thereafter. In young and older men, eccentric strength at 15°/s was ∼20% and ∼40% greater than isometric strength (P < 0.05), while at 360°/s eccentric strength was ∼50% and ∼90% greater, respectively (P < 0.05). These findings indicate that with increasing angular velocity, both young and older men have considerable increases in the eccentric:isometric ratio of torque production.
Keywords: EMG; aging; amélioration de la force résiduelle; elderly; faiblesse; lengthening; muscle; personnes âgées; raideur; residual force enhancement; stiffness; vieillissement; weakness; étirement.