Human cerebrospinal fluid (CSF) contains diverse lipid particles, including lipoproteins that are distinct from their plasma counterparts and contain apolipoprotein (apo) E isoforms, apoJ, and apoAI, and extracellular vesicles, which can be detected by annexin V binding. The aim of this study was to develop a method to quantify CSF particles and evaluate their relationship to aging and neurodegenerative diseases. We used a flow cytometric assay to detect annexin V-, apoE-, apoAI-, apoJ-, and amyloid (A) β42-positive particles in CSF from 131 research volunteers who were neurologically normal or had mild cognitive impairment (MCI), Alzheimer disease (AD) dementia, or Parkinson disease. APOE ε4/ε4 participants had CSF apoE-positive particles that were more frequently larger but at an 88% lower level versus those in APOE ε3/ε3 or APOE ε3/ε4 patients; this finding was reproduced in conditioned medium from mouse primary glial cell cultures with targeted replacement of apoE. Cerebrospinal fluid apoE-positive and β-amyloid (Aβ42)-positive particle concentrations were persistently reduced one-third to one-half in middle and older age subjects; apoAI-positive particle concentration progressively increased approximately 2-fold with age. Both apoAI-positive and annexin V-positive CSF particle levels were reduced one-third to one-half in CSF of MCI and/or AD dementia patients versus age-matched controls. Our approach provides new methods to investigate CNS lipid biology in relation to neurodegeneration and perhaps develop new biomarkers for diagnosis or treatment monitoring.