Small molecule/ML327 mediated transcriptional de-repression of E-cadherin and inhibition of epithelial-to-mesenchymal transition

Oncotarget. 2015 Sep 8;6(26):22934-48. doi: 10.18632/oncotarget.4473.

Abstract

Transcriptional repression of E-cadherin is a hallmark of Epithelial-to-Mesenchymal Transition (EMT) and is associated with cancer cell invasion and metastasis. Understanding the mechanisms underlying E-cadherin repression during EMT may provide insights into the development of novel targeted therapeutics for cancer. Here, we report on the chemical probe, ML327, which de-represses E-cadherin transcription, partially reverses EMT, and inhibits cancer cell invasiveness and tumor cell migration in vitro and in vivo. Induction of E-cadherin mRNA expression by ML327 treatment does not require de novo protein synthesis. RNA sequencing analysis revealed that ML327 treatment significantly alters expression of over 2,500 genes within three hours in the presence of the translational inhibitor, cycloheximide. Network analysis reveals Hepatocyte Nuclear Factor 4-alpha (HNF4α) as the most significant upstream transcriptional regulator of multiple genes whose expressions were altered by ML327 treatment. Further, small interfering RNA-mediated depletion of HNF4α markedly attenuates the E-cadherin expression response to ML327. In summary, ML327 represents a valuable tool to understand mechanisms of EMT and may provide the basis for a novel targeted therapeutic strategy for carcinomas.

Keywords: E-cadherin; EMT; small molecule.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Cadherins / genetics
  • Cell Line, Tumor
  • Chick Embryo
  • Colorectal Neoplasms / drug therapy
  • Colorectal Neoplasms / genetics
  • Colorectal Neoplasms / pathology
  • Epithelial-Mesenchymal Transition / drug effects*
  • Epithelial-Mesenchymal Transition / genetics
  • Female
  • Humans
  • Isoxazoles / pharmacology*
  • Lung Neoplasms / drug therapy
  • Lung Neoplasms / genetics
  • Lung Neoplasms / pathology
  • Mammary Neoplasms, Experimental / drug therapy
  • Mammary Neoplasms, Experimental / genetics
  • Mammary Neoplasms, Experimental / pathology
  • Mice
  • Neoplasm Invasiveness
  • Neoplasms / drug therapy*
  • Neoplasms / genetics
  • Neoplasms / pathology
  • Niacinamide / analogs & derivatives*
  • Niacinamide / pharmacology
  • Small Molecule Libraries / pharmacology*
  • Transcription, Genetic / drug effects

Substances

  • Cadherins
  • Isoxazoles
  • ML327 compound
  • Small Molecule Libraries
  • Niacinamide