Alzheimer's disease (AD) is the most common type of dementia, and promptly diagnosis of AD is crucial for delaying the development of disease and improving patient quality of life. However, AD detection, particularly in the early stages, remains a substantial challenge due to the lack of specific biomarkers. The present study was undertaken to identify and validate the potential of circulating miRNAs as novel biomarkers for AD. Solexa sequencing was employed to screen the expression profile of serum miRNAs in AD and controls. RT-qPCR was used to confirm the altered miRNAs at the individual level. Moreover, candidate miRNAs were examined in the serum samples of patients with mild cognitive impairment (MCI) and vascular dementia (VD). The results showed that four miRNAs (miR-31, miR-93, miR-143, and miR-146a) were markedly decreased in AD patients' serum compared with controls. Receiver operating characteristic curve analysis demonstrated that this panel of four miRNAs could be used as potential biomarker for AD. Furthermore, miR-93, and miR-146a were significantly elevated in MCI compared with controls, and the panel of miR-31, miR-93 and miR-146a can be used to discriminate AD from VD. We established a panel of four serum miRNAs as a novel noninvasive biomarker for AD diagnosis.