Background: Exposures to traffic-related air pollutants including polycyclic aromatic hydrocarbons (PAH) have been associated with the development and exacerbation of asthma. However, there is limited evidence on whether these pollutants are associated with the development of cockroach sensitization, a strong risk factor for urban asthma. We hypothesized that repeatedly high PAH exposure during childhood would be associated with increased risk of new cockroach sensitization.
Methods: As part of the research being conducted by the Columbia Center for Children's Environmental Health (CCCEH) birth cohort study in New York, a spot urine sample was collected from children at age 5 years (2003-2008) and again at age 9-10 years (2008-2012; n=248) and analyzed for 10 PAH metabolites. Repeatedly high PAH (High-High) exposure was defined as measures above median for age 5 PAH metabolites at both time points. Child blood samples at age 5 and 9 years were analyzed for total, anti-cockroach, mouse, dust mite, cat and dog IgE. Relative risks (RR) were estimated with multivariable modified Poisson regression.
Results: Individual PAH metabolite levels, except for 1-naphthol (1-OH-NAP), increased by 10-60% from age 5 to age 9-10. The prevalence of cockroach sensitization increased from 17.6% (33/188) at age 5 to 33.0% (62/188) at 9 years (p=0.001). After controlling for potential covariates including cockroach sensitization at age 5 in regression analyses, positive associations were found between repeatedly high exposure (High-High) to 1-OH-NAP, 3-hydroxyphenanthrene (3-OH-PHEN), or 1-hydroxypyrene (1-OH-PYR) and cockroach sensitization at age 9 (p-values<0.05). Compared to Low-Low exposure, the relative risk (RR) [95% CI] with repeatedly high exposure was 1.83 [1.06-3.17] for 1-OH-NAP, 1.54 [1.06-2.23] for 3-OH-PHEN, and 1.59 [1.04-2.43] for 1-OH-PYR.
Conclusions: Repeatedly high levels of urinary PAH metabolites during childhood may increase likelihood of sensitization to cockroach allergen in urban inner-city children at age 9 years.
Keywords: Childhood; Cockroach IgE; Inner-city; Polycyclic aromatic hydrocarbons; Urinary metabolites.
Copyright © 2015 Elsevier Inc. All rights reserved.