Leinamycin (LNM, 1) is a novel antitumor antibiotic produced by Streptomyces atroolivaceus S-140 and features an unusual 1,3-dioxo-1,2-dithiolane moiety that is spiro-fused to a thiazole-containing 18-membered lactam ring. The 1,3-dioxo-1,2-dithiolane moiety of LNM is essential for its antitumor activity via an episulfonium ion-mediated DNA alkylation upon reductive activation in the presence of cellular thiols. We recently isolated leinamycin E1 (LNM E1, 2) from an engineered strain S. atroolivaceus SB3033, which lacks the 1,3-dioxo-1,2-dithiolane moiety. Here we report the chemical synthesis of 8,4'-dideshydroxy-LNM (5) from 2 and determination of the cytotoxicity of 5 against selected cancer cell lines in comparison with 1; 5 exhibits comparable activity as 1 with the EC50 values between 8.21 and 275 nM. This work reveals new insight into the structure-activity relationship of LNM and highlights the synergy between metabolic pathway engineering and medicinal chemistry for natural product drug discovery.
Keywords: Antitumor antibiotic; DNA alkylation; Leinamycin; Metabolic pathway engineering; Structure–activity relationship.
Copyright © 2015 Elsevier Ltd. All rights reserved.