Introduction: Neuropathic pain is defined as pain arising as a direct consequence of a lesion or disease affecting the somatosensory system and is common after surgery. Neuropathic pain can persist without an obvious injury. In this study we aim to validate a murine chronic constriction injury model as a model for neuropathic pain research and determine if silk or catgut ligatures induced most stable neuropathic pain behavior.
Methods: In this study mice underwent chronic constriction or sham surgery. Mice were tested on cutaneous hyperalgesia with the cumulative reaction time in the acetone test, on allodynia with the cumulative reaction time and number of lifts in the cold plate test and the maximal force before withdrawal in von Frey test.
Results: In the acetone test neuropathic pain was seen in CCI mice, but not in sham mice. Hyperalgesia was present postoperatively in CCI mice compared with preoperatively. In the cold plate test cumulative reaction time and number of lifts were higher in the ipsilateral hind paw than in the contralateral hind paw and sham mice. Postoperative measurements were higher than preoperatively. In the von Frey test the postoperative measurements were lower in the ipsilateral hind paw than preoperatively, while the contralateral hind paw showed an increase in maximal force before withdrawal. The contralateral hind paw showed more difference with sham mice than the ipsilateral hind paw. Silk ligatures showed more stable neuropathic pain behavior. In the acetone test, the cold plate test and the von Frey test the mice scored higher on neuropathic pain having silk ligatures, compared with catgut ligatures.
Conclusion: In this study we validated a murine CCI model for neuropathic pain behavior. In the murine CCI model it appears that silk ligatures demonstrate more stable neuropathic pain behaviors than catgut ligatures in de CCI model.
Keywords: Allodynia; Catgut; Hyperalgesia; Neuropathic pain; Silk.