A biofilm-based 4 L two chamber microbial electrolysis cell (MEC) was continuously fed with acetate under saline conditions (35 g/L NaCl) for more than 100 days. The MEC produced a biogas highly enriched in H2 (≥90%). Both current (10.6 ± 0.2 A/m(2)Anode or 199.1 ± 4.0 A/m(3)MEC) and H2 production (201.1 ± 7.5 LH2/m(2)Cathode·d or 0.9 ± 0.0 m(3)H2/m(3)MEC·d) rates were highly significant when considering the saline operating conditions. A microbial analysis revealed an important enrichment in the anodic biofilm with five main bacterial groups: 44% Proteobacteria, 32% Bacteroidetes, 18% Firmicutes and 5% Spirochaetes and 1% Actinobacteria. Of special interest is the emergence within the Proteobacteria phylum of the recently described halophilic anode-respiring bacteria Geoalkalibacter (unk. species), with a relative abundance up to 14%. These results provide for the first time a noteworthy alternative for the treatment of saline effluents and continuous production of H2.
Keywords: Biohydrogen; Geoalkalibacter; High-throughput sequencing; Microbial electrolysis cell; Saline wastewater; Scanning electron microscopy.
Copyright © 2015 Elsevier Ltd. All rights reserved.