Differential Inhibition of Human Atherosclerotic Plaque-Induced Platelet Activation by Dimeric GPVI-Fc and Anti-GPVI Antibodies: Functional and Imaging Studies

J Am Coll Cardiol. 2015 Jun 9;65(22):2404-15. doi: 10.1016/j.jacc.2015.03.573.

Abstract

Background: Glycoprotein VI (GPVI) is the essential platelet collagen receptor in atherothrombosis, but its inhibition causes only a mild bleeding tendency. Thus, targeting this receptor has selective antithrombotic potential.

Objectives: This study sought to compare compounds interfering with platelet GPVI-atherosclerotic plaque interaction to improve current antiatherothrombotic therapy.

Methods: Human atherosclerotic plaque-induced platelet aggregation was measured in anticoagulated blood under static and arterial flow conditions (550/s, 1,100/s, and 1,500/s). Inhibition by dimeric GPVI fragment crystallizable region of IgG (Fc) masking GPVI binding sites on collagen was compared with that of 3 anti-GPVI antibodies: BLO8-1, a human domain antibody; 5C4, a fragment antigen-binding (Fab fragment) of monoclonal rat immunoglobulin G; and m-Fab-F, a human recombinant sFab against GPVI dimers.

Results: GPVI-Fc reduced plaque-triggered platelet aggregation in static blood by 51%, BLO8-1 by 88%, and 5C4 by 93%. Under arterial flow conditions, BLO8-1 and 5C4 almost completely inhibited platelet aggregation while preserving platelet adhesion on plaque. Inhibition by GPVI-Fc, even at high concentrations, was less marked but increased with shear rate. Advanced optical imaging revealed rapid persistent GPVI-Fc binding to collagen under low and high shear flow, upstream and downstream of plaque fragments. At low shear particularly, platelets adhered in plaque flow niches to GPVI-Fc-free segments of collagen fibers and recruited other platelets onto aggregates via ADP and TxA2 release.

Conclusions: Anti-GPVI antibodies inhibit atherosclerotic plaque-induced platelet aggregation under static and flow conditions more effectively than GPVI-Fc. However, potent platelet inhibition by GPVI-Fc at a higher shear rate (1,500/s) suggests localized antithrombotic efficacy at denuded or fissured stenotic high-risk lesions without systemic bleeding. The compound-specific differences have relevance for clinical trials targeting GPVI-collagen interaction combined with established antiplatelet therapies in patients with spontaneous plaque rupture or intervention-associated plaque injury.

Keywords: antithrombotic; atherothrombosis; glycoprotein VI; plaque rupture.

MeSH terms

  • Animals
  • Blood Flow Velocity / drug effects
  • Blood Flow Velocity / physiology*
  • Carotid Arteries / drug effects
  • Carotid Arteries / pathology
  • Carotid Arteries / physiopathology*
  • Carotid Stenosis / drug therapy
  • Carotid Stenosis / etiology
  • Carotid Stenosis / physiopathology
  • Humans
  • Immunoglobulin Fab Fragments / pharmacology*
  • Immunologic Factors / pharmacology
  • Plaque, Atherosclerotic / complications
  • Plaque, Atherosclerotic / diagnosis
  • Plaque, Atherosclerotic / drug therapy*
  • Platelet Activation / drug effects*
  • Platelet Membrane Glycoproteins / pharmacology*
  • Rats

Substances

  • Immunoglobulin Fab Fragments
  • Immunologic Factors
  • Platelet Membrane Glycoproteins
  • platelet membrane glycoprotein VI