Objectives: Current monoanalyte blood-based biomarkers for the diagnosis and follow-up of neuroendocrine tumors (NETs) do not achieve satisfactory metrics of sensitivity and specificity. We report the sensitivity and selectivity of the PCR-based test, the NETest, to detect tumors with reference to other benign and malignant gastrointestinal diseases.
Methods: A total of 179 cases (gastrointestinal tumors: n=81; pancreatic disease: n=98) were prospectively collected and assessed using the NETest or chromogranin A (CgA) to determine metrics for detecting small intestinal and pancreatic NETs.
Results: For intestinal carcinoids, the accuracy of the NETest was 93% (all NETs positive and 3 (12%) colorectal tumors were positive). CgA was positive in 80%, but 29% (n=7) of colorectal cancers were CgA positive. For pancreatic disease, the NETest accuracy was 94% (96% NETs positive, 2 (6%) of intraductal papillary mucinous neoplasms (IPMNs) were positive). The accuracy of CgA was 56% (29% of pancreatic NETs were CgA positive). Overall, the NETest was significantly more sensitive than CgA for the detection of small intestinal (area under the curve 0.98 vs. 0.75 P<0.0001) and pancreatic NETs (0.94 vs. 0.52, P<0.0001). NETest scores were elevated (P<0.05) in extensive disease and were more accurate (76-80%) than CgA levels (20-32%). The metrics of the multianalyte NETest met the performance criteria proposed by the National Institutes of Health for biomarkers, whereas CgA measurement did not.
Conclusions: This study demonstrates that a blood-based multianalyte NET gene transcript measurement of well-differentiated small intestinal and pancreatic neuroendocrine tumor disease is sensitive and specific and outperforms the current monoanalyte diagnostic strategy of plasma CgA measurement.