The endothelium plays a crucial role in maintaining vascular homeostasis by producing several vasodilating factors, including nitric oxide (NO), prostacyclin (PGI2), and endothelium-dependent hyperpolarisation (EDH); however, the balance between endothelial relaxing and contracting factors is disrupted in disease states such as diabetes mellitus and hypertension. Most reported studies of endothelial dysfunction in diabetes focused on the actions of NO; however, there is accumulating evidence demonstrating that in addition to NO, PGI2 and EDH are likely to contribute to the vasodilatation of blood vessels. EDH plays an important role as a regulator of vascular tone and reactivity in resistance and conduit arteries of animal models and humans. PGI2 only plays a minimal role in endothelium-dependent vasodilatation but may serve as an important compensatory mechanism in conditions in which NO and EDH activities are decreased. Further studies are needed to determine the exact roles of EDH and PGI2 in the development of endothelial dysfunction and clinical vasculopathy in humans with type 1 and type 2 diabetes.
Keywords: diabetes mellitus; endothelium; endothelium-dependent hyperpolarisation; potassium channels; prostacyclin.