Cross sections for 61 palmitoylated peptides and 73 cysteine-unmodified peptides are determined and used together with a previously obtained tryptic peptide library to derive a set of intrinsic size parameters (ISPs) for the palmitoyl (Pal) group (1.26 ± 0.04), carboxyamidomethyl (Am) group (0.92 ± 0.04), and the 20 amino acid residues to assess the influence of Pal- and Am-modification on cysteine and other amino acid residues. These values highlight the influence of the intrinsic hydrophobic and hydrophilic nature of these modifications on the overall cross sections. As a part of this analysis, we find that ISPs derived from a database of a modifier on one amino acid residue (CysPal) can be applied on the same modification group on different amino acid residues (SerPal and TyrPal). Using these ISP values, we are able to calculate peptide cross sections to within ± 2% of experimental values for 83% of Pal-modified peptide ions and 63% of Am-modified peptide ions. We propose that modification groups should be treated as individual contribution factors, instead of treating the combination of the particular group and the amino acid residue they are on as a whole when considering their effects on the peptide ion mobility features.