Background: Because immunity against Staphylococcus aureus has not been fully elucidated, there is no diagnostic test to gauge how robust a patient's host response is likely to be. Therefore, we aimed to develop a test for specific antibodies in serum with diagnostic and prognostic potential.
Questions/purposes: We describe the development and validation of a multiplex immunoassay for characterizing a patient's immune response against 14 known S aureus antigens, which we then used to answer four questions: (1) Do certain antigens predominate in the immune response against S aureus? (2) Is there a predominant pattern of antigens recognized by patients and mice with infections? (3) Is the immunoglobulin G (IgG) response to any single antigen a useful predictor of ongoing S aureus infection? (4) Does measurement of the combined response against all 14 antigens provide a better predictor of ongoing infection?
Methods: A case-control study was performed. Sera were collected from 35 consecutive patients with S aureus culture-confirmed (methicillin-sensitive S aureus or methicillin-resistant S aureus) musculoskeletal infections (deep implant-associated, osteomyelitis, and cases of established septic arthritis). Patients were excluded only if they did not give informed consent for participation. Twenty-four patients had implant infections after total joint replacements, five had fracture implant infections, four had native knee infections, and two had chronic osteomyelitis without an implant. Control patients were chosen from a group of healthy, medically optimized patients scheduled to undergo elective arthroplasty. Control patients were matched for age (± 3 years), BMI (± 3 kg/m(2)), and sex as closely as possible to patients with infections. Sera from patients with S aureus infections and murine S aureus tibial implant infections were used to evaluate a multiplex immunoassay for immunoglobulin titers against 14 recombinant S aureus antigens. All patients were treated with organism-targeted antibiotic therapy and appropriate, timely surgery. Treatment response was monitored with clinical examination, erythrocyte sedimentation rate, C-reactive protein, and resampling of the infection site for the pathogen as needed. Elevated inflammatory markers or persistent positive culture results were considered evidence of ongoing infection. Treatment provided was considered standard-of-care therapy in our medical center and all patients were treated jointly with a board-certified infectious disease specialist.
Results: Four antigens elicited more than 65% of the measurable IgG, the most dominant being against iron-regulated surface determinant protein B (IsdB). Patients with infections had different patterns of elevated IgG titers, so that no single titer was elevated in more than 50% of patients with infections (area under the curve [AUC] ≤ 0.80). Multivariate analysis of IgG titers yielded greater predictive power of S aureus infection (AUC = 0.896). Patients with infections who had high titers against IsdB (median of survivors, 7.28 [25%-75% range, 2.22-21.26] vs median of patients with infection-related death, 40.41 [25%-75% range, 23.57-51.37], difference of medians, 33.13; p = 0.043) and iron-regulated surface determinant protein A (IsdA) median of survivors, 2.21 [25%-75% range, 0.79-9.11] vs median of patients with infection-related death, 12.24 [25%-75% range, 8.85-15.95], difference of medians, 10.03; p = 0.043) were more likely to die from infections than those who did not have high titers of IsdB.
Conclusions: Measurement of the host antibody response is a predictor of ongoing infection that may prove to have prognostic value. Future studies will seek to enlarge the patient population with infections to allow us to reduce the number of antigens required to achieve a stronger predictive power.
Clinical relevance: Measurement of the immune response against S aureus with this diagnostic tool may help guide future studies on prophylaxis and therapy in an era of personalized medicine and pathogen-specific therapies.