Theory and prospective studies have linked restrained eating (RE) to risk for future weight gain and the onset of obesity, but little is known about resting state neural activity that may underlie this association. To address this gap, resting fMRI was used to test the extent to which spontaneous neural activity in regions associated with inhibitory control and food reward account for potential relations between baseline RE levels and changes in body weight among dieters over a one-year interval. Spontaneous regional activity patterns corresponding to RE were assessed among 50 young women using regional homogeneity (ReHo) analysis, which measured temporal synchronization of spontaneous fluctuations within a food deprivation condition. Analyses indicated higher baseline RE scores predicted more weight gain at a one-year follow-up. Furthermore, food-deprived dieting women with high dietary restraint scores exhibited more spontaneous local activity in brain regions associated with the expectation and valuation for food reward [i.e., orbitofrontal cortex (OFC)/ventromedial prefrontal cortex (VMPFC)] and reduced spontaneous local activity in inhibitory control regions [i.e., bilateral dorsal-lateral prefrontal cortex (DLPFC)] at baseline. Notably, the association between baseline RE and follow-up weight gain was mediated by decreased local synchronization of the right DLPFC in particular and, to a lesser degree, increased local synchronization of the right VMPFC. In conjunction with previous research, these findings highlight possible neural mechanisms underlying the relation between RE and risk for weight gain.
Keywords: Dieting; Inhibitory control; Resting-state fMRI; Restrained eating; Reward; Weight gain.
Copyright © 2015 Elsevier B.V. All rights reserved.