An all-solid-state polymeric membrane Pb(2+) ion-selective electrode (Pb(2+)-ISE) based on bimodal pore C60 (BP-C60) as solid contact has been developed. A BP-C60 film can be readily formed on the surface of a glassy carbon electrode by electrochemical deposition. Cyclic voltammetry and electrochemical impedance spectroscopy have been employed to characterize the BP-C60 film. The large double layer capacitance and fast charge-transfer capability make BP-C60 favorable to be used as solid contact for developing all-solid-state ISEs. The all-solid-state BP-C60-based Pb(2+)-ISE shows a Nernstian response in the range from 1.0×10(-9) to 1.0×10(-3)M with a detection limit of 5.0×10(-10)M. The membrane electrode not only displays an excellent potential stability with the absence of a water layer between the ion-selective membrane and the underlying BP-C60 solid contact, but also is insensitive to interferences from O2, CO2 and light. The proposed solid-contact Pb(2+)-ISE has been applied to determine Pb(2+) in real water samples and the results agree well with those obtained by anodic stripping voltammetry.
Keywords: All solid state; Bimodal pore C(60); Electrodeposition; Ion-selective electrode; Lead; Solid contact.
Copyright © 2015 Elsevier B.V. All rights reserved.