Cardiac gene expression data and in silico analysis provide novel insights into human and mouse taste receptor gene regulation

Naunyn Schmiedebergs Arch Pharmacol. 2015 Oct;388(10):1009-27. doi: 10.1007/s00210-015-1118-1. Epub 2015 May 20.

Abstract

G protein-coupled receptors are the principal mediators of the sweet, umami, bitter, and fat taste qualities in mammals. Intriguingly, the taste receptors are also expressed outside of the oral cavity, including in the gut, airways, brain, and heart, where they have additional functions and contribute to disease. However, there is little known about the mechanisms governing the transcriptional regulation of taste receptor genes. Following our recent delineation of taste receptors in the heart, we investigated the genomic loci encoding for taste receptors to gain insight into the regulatory mechanisms that drive their expression in the heart. Gene expression analyses of healthy and diseased human and mouse hearts showed coordinated expression for a subset of chromosomally clustered taste receptors. This chromosomal clustering mirrored the cardiac expression profile, suggesting that a common gene regulatory block may control the taste receptor locus. We identified unique domains with strong regulatory potential in the vicinity of taste receptor genes. We also performed de novo motif enrichment in the proximal promoter regions and found several overrepresented DNA motifs in cardiac taste receptor gene promoters corresponding to ubiquitous and cardiac-specific transcription factor binding sites. Thus, combining cardiac gene expression data with bioinformatic analyses, this study has provided insights into the noncoding regulatory landscape for taste GPCRs. These findings also have broader relevance for the study of taste GPCRs outside of the classical gustatory system, where understanding the mechanisms controlling the expression of these receptors may have implications for future therapeutic development.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Adult
  • Aged
  • Animals
  • Binding Sites
  • Child
  • Child, Preschool
  • Computational Biology
  • Computer Simulation
  • Female
  • Gene Expression Regulation*
  • Heart / physiology*
  • Humans
  • Male
  • Mice
  • Mice, Transgenic
  • Middle Aged
  • Promoter Regions, Genetic
  • Receptors, G-Protein-Coupled / genetics*
  • Taste / genetics*
  • Taste Receptors, Type 2
  • Young Adult

Substances

  • Receptors, G-Protein-Coupled
  • taste receptors, type 1
  • Taste Receptors, Type 2