Although interferon-free antiviral treatment is expected to improve treatment of hepatitis C, it is unclear to what extent pre-existing drug-resistant amino acid substitutions influence response to therapy. The impact of pre-existing drug-resistant substitutions on virological response to daclatasvir and asunaprevir combination therapy was studied in genotype 1b hepatitis C virus (HCV)-infected patients. Thirty-one patients were treated with daclatasvir and asunaprevir for 24 weeks. Twenty-six patients achieved sustained virological response (SVR), three patients experienced viral breakthrough, and two patients relapsed. Direct sequencing analysis of HCV showed the existence of daclatasvir-resistant NS5A-L31M or -Y93H/F variants in nine out of 30 patients (30%) prior to treatment, while asunaprevir-resistant NS3-D168 mutations were not detected in any patient. All 21 patients with wild-type NS5A-L31 and -Y93 achieved SVR, whereas only four out of nine patients (44%) with L31M or Y93F/H substitutions achieved SVR (P = 0.001). Ultra-deep sequencing analysis showed that treatment failure was associated with the emergence of both NS5A-L31/Y93 and NS3-D168 variants. NS5A-L31/Y93 variants remained at high frequency through post-treatment weeks 103 through 170, while NS3-D168 variants were replaced by wild-type in all patients. In conclusion, pre-existence of NS5A inhibitor-resistant substitutions compromised the response to daclatasvir and asunaprevir combination therapy, and treatment failure was associated with the emergence of both NS5A-L31/Y93 and NS3-D168 variants. While asunaprevir-resistant variants that emerged during therapy returned to wild-type, daclatasvir-resistant variants tended to persist in the absence of the drug.
Keywords: antiviral resistance; asunaprevir; combination therapy; daclatasvir; deep sequencing.
© 2015 Wiley Periodicals, Inc.