Human errors are a major concern in many medical processes. To help address this problem, we are investigating an approach for automatically detecting when performers of a medical process deviate from the acceptable ways of performing that process as specified by a detailed process model. Such deviations could represent errors and, thus, detecting and reporting deviations as they occur could help catch errors before harm is done. In this paper, we identify important issues related to the feasibility of the proposed approach and empirically evaluate the approach for two medical procedures, chemotherapy and blood transfusion. For the evaluation, we use the process models to generate sample process executions that we then seed with synthetic errors. The process models describe the coordination of activities of different process performers in normal, as well as in exceptional situations. The evaluation results suggest that the proposed approach could be applied in clinical settings to help catch errors before harm is done.