A New Paradigm to Mitigate Osteosarcoma by Regulation of MicroRNAs and Suppression of the NF-κB Signaling Cascade

Dev Reprod. 2014 Dec;18(4):197-212. doi: 10.12717/devrep.2014.18.4.197.

Abstract

Osteosarcoma (OS) is one of the most common malignant primary bone tumors and NF-κB appears to play a causative role, but the mechanisms are poorly understood. OS is one of the pleomorphic, highly metastasized and invasive neoplasm which is capable to generate osteoid, osteoclast and osteoblast matrix. Its high incidence has been reported in adolescent and childevrepen. Cell signal cascade is the pivotal functional mechanism acquired during the differentiation, proliferation, growth and survival of the cells in neoplasm including OS. The major limitation to the success of chemotherapy in OS is the development of multidevrepug resistance (Mdevrep). Answers to all such queries might come from the knock-in experiments in which the combined approach of miRNAs with NF-κB pathway is put into use. Abnormal miRNAs can modulate several epigenetical switching as a hallmark of number of diseases via different cell signaling. Studies on miRNAs have opened up the new avenues for both the diagnosis and treatment of cancers including OS. Collectively, through the present study an attempt has been made to establish a new systematic approach for the investigation of microRNAs, biophysiological factors and their target pairs with NF-κB to ameliorate oncogenesis with the "bridge between miRNAs and NF-κB". The application of NF-κB inhibitors in combination with miRNAs is expected to result in a more efficient killing of the cancer stem cells and a slower or less likely recurrence of cancer.

Keywords: BBNM; GWAS; Histeotypic neoplasia; RANK; Targetome; miR.