Transungual drug delivery of antifungals is considered highly desirable to treat common nail disorders such as onychomycosis, due to localized effects, and improved adherence resulting from minimal systemic adverse events. However, the development of effective topical therapies has been hampered by poor nail penetration. An effective topical antifungal must permeate through, and under the dense keratinized nail plate to the site of infection in the nail bed and nail matrix. We present here the formulation development program to provide effective transungual and subungual delivery of efinaconazole, the first topical broad spectrum triazole specifically developed for onychomycosis treatment. We discuss the important aspects encompassing the formulation development program for efinaconazole topical solution, 10%, focusing on its solubility in a number of solvents, in vitro penetration through the nail, and in vivo efficacy. Efinaconazole topical solution, 10% is a stable, non-lacquer, antifungal with a unique combination of ingredients added to an alcohol-based formulation to provide low surface tension and good wetting properties. This low surface tension is believed to affect effective transungual delivery of efinaconazole and believed to provide a dual mode of delivery by accessing the nail bed by wicking into the space between the nail and nail plate.
Keywords: delivery; drug design; efinaconazole; excipients; formulation; onychomycosis; permeability; physicochemical properties; solubility; stability.
© 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.