The actin cytoskeleton has been implicated in the assembly of cilia, but roles of actin-dependent motor proteins in ciliogenesis remain unclear. Myosin heavy chain 10 (MYH10), one of the isoforms of non-muscle myosin II, is known to mediate centrosome reorientation during cell migration. Here we show that MYH10 is required for centriole migration to the apical plasma membrane, which occurs at the onset of ciliogenesis. Knockdown of MYH10 in RPE1 cells caused a reduction in the levels of cortical filamentous actin (F-actin) and its binding protein EZRIN. Moreover, both centriole migration and subsequent cilium assembly were defective in MYH10 depleted cells. We further found that MYH10 influences centrosomal recruitment of IFT88, which is required for the transport of building blocks to the ciliary tip. The role of MYH10 in IFT88 recruitment appears to be indirect in that there is a correlation between centriolar IFT88 levels and centriolar positions along the apical-basal axis during ciliogenesis. Our results indicate that MYH10 contributes to ciliogenesis in RPE1 cells by promoting cortical actin-dependent centriole migration.
Keywords: Actin; Centriole migration; IFT88; MYH10; Primary cilia.
Copyright © 2015 Elsevier Inc. All rights reserved.