Similar PAH fate in anaerobic digesters inoculated with three microbial communities accumulating either volatile fatty acids or methane

PLoS One. 2015 Apr 15;10(4):e0125552. doi: 10.1371/journal.pone.0125552. eCollection 2015.

Abstract

Urban sludge produced on wastewater treatment plants are often contaminated by organic pollutants such as polycyclic aromatic hydrocarbons (PAH). Their removal under methanogenic conditions was already reported, but the factors influencing this removal remain unclear. Here, we determined the influence of microbial communities on PAH removal under controlled physico-chemical conditions. Twelve mesophilic anaerobic digesters were inoculated with three microbial communities extracted from ecosystems with contrasting pollution histories: a PAH contaminated soil, a PCB contaminated sediment and a low contaminated anaerobic sludge. These anaerobic digesters were operated during 100 days in continuous mode. A sterilised activated sludge, spiked with 13 PAH at concentrations usually encountered in full-scale wastewater treatment plants, was used as substrate. The dry matter and volatile solid degradation, the biogas production rate and composition, the volatile fatty acids (VFA) production and the PAH removals were monitored. Bacterial and archaeal communities were compared in abundance (qPCR), in community structure (SSCP fingerprinting) and in dominant microbial species (454-pyrosequencing). The bioreactors inoculated with the community extracted from low contaminated anaerobic sludge showed the greater methane production. The PAH removals ranged from 10% to 30%, respectively, for high and low molecular weight PAH, whatever the inoculums tested, and were highly correlated with the dry matter and volatile solid removals. The microbial community structure and diversity differed with the inoculum source; this difference was maintained after the 100 days of digestion. However, the PAH removal was not correlated to these diverse structures and diversities. We hence obtained three functional stable consortia with two contrasted metabolic activities, and three different pictures of microbial diversity, but similar PAH and matter removals. These results confirm that PAH removal depends on the molecule type and on the solid matter removal. But, as PAH elimination is similar whether the solid substrate is degraded into VFA or into methane, it seems that the fermentative communities are responsible for their elimination.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anaerobiosis
  • Archaea / metabolism
  • Bacteria / metabolism
  • Bioreactors / microbiology*
  • Environmental Pollutants / isolation & purification
  • Environmental Pollutants / metabolism*
  • Fatty Acids, Volatile / metabolism*
  • Methane / metabolism*
  • Polycyclic Aromatic Hydrocarbons / isolation & purification
  • Polycyclic Aromatic Hydrocarbons / metabolism*
  • Sewage / microbiology*

Substances

  • Environmental Pollutants
  • Fatty Acids, Volatile
  • Polycyclic Aromatic Hydrocarbons
  • Sewage
  • Methane