Crystal Structure, Transport, and Magnetic Properties of an Ir(6+) Compound Ba8Al2IrO14

Inorg Chem. 2015 May 4;54(9):4371-6. doi: 10.1021/acs.inorgchem.5b00157. Epub 2015 Apr 14.

Abstract

The novel iridate Ba8Al2IrO14 was prepared as single crystals by self-flux method, thereby providing a rare example of an all-Ir(VI) compound that can be synthesized under ambient pressure conditions. The preparation of all-Ir(6+) iridate without using traditional high-pressure techniques has to our knowledge previously only been reported in Nd2K2IrO7 and Sm2K2IrO7. The monoclinic crystal structure (space group C2/m, No.12) is stable down to 90 K and contains layers of IrO6 octahedra separated by Ba and AlO4 tetrahedra. The material exhibits insulating behavior with a narrow band gap of ∼0.6 eV. The positive Seebeck coefficient indicates hole-like dominant charge carriers. Susceptibility measurement shows antiferromagnetic coupling with no order down to 2 K.