Two Japanese Patients With SMA Type 1 Suggest that Axonal-SMN May Not Modify the Disease Severity

Pediatr Neurol. 2015 Jun;52(6):638-41. doi: 10.1016/j.pediatrneurol.2015.02.023. Epub 2015 Feb 28.

Abstract

Background: Spinal muscular atrophy is caused by survival motor neuron gene SMN1 mutations. SMN1 produces a full-length SMN1 protein isoform encoded by exons 1-7, and an axonal-SMN protein isoform encoded by exons 1-3 and intron 3. The axonal-SMN protein is expressed only in the embryonic period and plays a significant role in axonal growth. However, there has been no report on contribution of axonal-SMN to spinal muscular atrophy severity until now.

Patients: Two Japanese boys with spinal muscular atrophy type 1 in our study presented with generalized muscle weakness and respiratory insufficiency soon after birth and required an artificial ventilator from early infancy. Patient 1 was compound heterozygous for two SMN1 mutations, whole-gene deletion, and an intragenic mutation (c.819_820insT). He retained one copy of SMN1 producing the N-terminal part of SMN1 including axonal-SMN. On the other hand, patient 2 was homozygous for SMN1 deletion. Both of them showed the same copy number of spinal muscular atrophy-modifying genes, NAIP and SMN2. These findings suggested that the C-terminal domain of full-length SMN1 determined the severity, irrespective of presence or absence of axonal-SMN expression.

Conclusion: In patient 1, the C-terminal domain of full-length SMN1 determined spinal muscular atrophy severity, rather than the axonal-SMN, one copy of which could be present and intact. The presence or absence of axonal-SMN may not impact disease severity in spinal muscular atrophy type 1 patients.

Keywords: C-terminal domain; axonal-SMN; full-length SMN1; spinal muscular atrophy.

Publication types

  • Case Reports
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Axons / metabolism*
  • Child
  • DNA Mutational Analysis
  • Exons
  • Humans
  • Infant
  • Male
  • Mutation
  • Severity of Illness Index
  • Spinal Muscular Atrophies of Childhood / diagnosis
  • Spinal Muscular Atrophies of Childhood / genetics*
  • Spinal Muscular Atrophies of Childhood / metabolism
  • Survival of Motor Neuron 1 Protein / genetics*

Substances

  • SMN1 protein, human
  • Survival of Motor Neuron 1 Protein