Versatile SERS sensing based on black silicon

Opt Express. 2015 Mar 9;23(5):6763-72. doi: 10.1364/OE.23.006763.

Abstract

Black Si (b-Si) with gold or silver metal coating has been shown to be an extremely effective substrate for surface-enhanced Raman scattering (SERS). Here, we demonstrate that it is also a highly versatile SERS platform, as it supports a wide range of surface functionalizations. In particular, we report the use of a molecularly imprinted polymer (MIP) coating and a hydrophobic coating on b-Si to establish two different sensing modalities. First, using a MIP layer on Au-coated b-Si, we show selective sensing of two closely related varieties of tetracycline. Second, a hydrophobic coating was used to concentrate the analyte adsorbed on gold colloidal nanoparticles, thus increasing the sensitivity of the measurement by an order of magnitude. In this experiment, Au nanoparticles and analyte were mixed just before SERS measurements and were concentrated by drop-drying on the super-hydrophobic b-Si. These approaches are promising for SERS measurements that are sensitive to the aging of bare plasmonic metal-coated substrates.