The EGFR-targeted antibody cetuximab is effective against head and neck cancer (HNSCC), but in only 15% to 20% of patients, and the variability and extent of cetuximab-mediated cellular immunity is not fully understood. We hypothesized that regulatory T cells (Treg) may exert a functional and clinical impact on antitumor immunity in cetuximab-treated individuals. The frequency, immunosuppressive phenotype, and activation status of Treg and natural killer (NK) cells were analyzed in the circulation and tumor microenvironment of cetuximab-treated patients with HNSCC enrolled in a novel neoadjuvant, single-agent cetuximab clinical trial. Notably, cetuximab treatment increased the frequency of CD4(+)FOXP3(+) intratumoral Treg expressing CTLA-4, CD39, and TGFβ. These Treg suppressed cetuximab-mediated antibody-dependent cellular cytotoxicity (ADCC) and their presence correlated with poor clinical outcome in two prospective clinical trial cohorts. Cetuximab expanded CTLA-4(+)FOXP3(+) Treg in vitro, in part, by inducing dendritic cell maturation, in combination with TGFβ and T-cell receptor triggering. Importantly, cetuximab-activated NK cells selectively eliminated intratumoral Treg but preserved effector T cells. In ex vivo assays, ipilimumab targeted CTLA-4(+) Treg and restored cytolytic functions of NK cells mediating ADCC. Taken together, our results argue that differences in Treg-mediated suppression contribute to the clinical response to cetuximab treatment, suggesting its improvement by adding ipilimumab or other strategies of Treg ablation to promote antitumor immunity.
©2015 American Association for Cancer Research.