Robustness in the fitting of molecular mechanics parameters

J Comput Chem. 2015 May 30;36(14):1083-101. doi: 10.1002/jcc.23897. Epub 2015 Mar 31.

Abstract

Automated methods for force field parametrization have attracted renewed interest of the community, but the robustness issues associated with the often ill-conditioned nature of parameter optimization have been vastly underappreciated in the recent literature. For this reason, this article offers a detailed description of the origin and nature of these issues. This includes a discussion of the restrained electrostatic potential fit (RESP) charge model, which does contain explicit robustness-enhancing measures albeit not in the context of bonded parameters, and which forms an inspiration for the present work. It is also discussed how all the bonded parameters in a Class I force field can be simultaneously fit using the linear least squares (LLS) procedure, and a novel restraining strategy is presented that overcomes robustness issues in the LLS fitting of bonded parameters while minimally impacting the fitted values of well-behaved parameters. Two variants of this methodology are then validated through a number of case studies, including the fitting of bond-charge increments, which illustrates the method's potential for robustly solving general LLS problems beyond force field parametrization.

Keywords: CHARMM; empirical force fields; linear least squares; optimization; robustness.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Computer Simulation*
  • Models, Chemical*
  • Molecular Structure
  • Quantum Theory
  • Thermodynamics