In this work, cytotoxicity and cellular impedance response was compared for CdSe/ZnS core/shell quantum dots (QDs) with positively charged cysteamine-QDs, negatively charged dihydrolipoic acid-QDs and zwitterionic D-penicillamine-QDs exposed to canine kidney MDCKII cells. Pretreatment of cells with pharmacological inhibitors suggested that the uptake of nanoparticles was largely due to receptor-independent pathways or spontaneous entry for carboxylated and zwitterionic QDs, while for amine-functionalized particles involvement of cholesterol-enriched membrane domains is conceivable. Cysteamine-QDs were found to be the least cytotoxic, while D-penicillamine-QDs reduced the mitochondrial activity of MDCKII by 20-25%. Although the cell vitality appeared unaffected (assessed from the changes in mitochondrial activity using a classical MTS assay after 24 h of exposure), the binding of QDs to the cellular interior and their movement across cytoskeletal filaments (captured and characterized by single-particle tracking), was shown to compromise the integrity of the cytoskeletal and plasma membrane dynamics, as evidenced by electric cell-substrate impedance sensing.
Keywords: CdSe/ZnS; ECIS; biocompatibility; cytotoxicity; quantum dots; single-particle tracking.