DEOD: uncovering dominant effects of cancer-driver genes based on a partial covariance selection method

Bioinformatics. 2015 Aug 1;31(15):2452-60. doi: 10.1093/bioinformatics/btv175. Epub 2015 Mar 26.

Abstract

Motivation: The generation of a large volume of cancer genomes has allowed us to identify disease-related alterations more accurately, which is expected to enhance our understanding regarding the mechanism of cancer development. With genomic alterations detected, one challenge is to pinpoint cancer-driver genes that cause functional abnormalities.

Results: Here, we propose a method for uncovering the dominant effects of cancer-driver genes (DEOD) based on a partial covariance selection approach. Inspired by a convex optimization technique, it estimates the dominant effects of candidate cancer-driver genes on the expression level changes of their target genes. It constructs a gene network as a directed-weighted graph by integrating DNA copy numbers, single nucleotide mutations and gene expressions from matched tumor samples, and estimates partial covariances between driver genes and their target genes. Then, a scoring function to measure the cancer-driver score for each gene is applied. To test the performance of DEOD, a novel scheme is designed for simulating conditional multivariate normal variables (targets and free genes) given a group of variables (driver genes). When we applied the DEOD method to both the simulated data and breast cancer data, DEOD successfully uncovered driver variables in the simulation data, and identified well-known oncogenes in breast cancer. In addition, two highly ranked genes by DEOD were related to survival time. The copy number amplifications of MYC (8q24.21) and TRPS1 (8q23.3) were closely related to the survival time with P-values = 0.00246 and 0.00092, respectively. The results demonstrate that DEOD can efficiently uncover cancer-driver genes.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Breast Neoplasms / genetics
  • Breast Neoplasms / mortality
  • DNA-Binding Proteins
  • Female
  • Gene Dosage
  • Gene Expression
  • Gene Expression Regulation, Neoplastic
  • Gene Regulatory Networks
  • Genes, Dominant*
  • Genes, Neoplasm*
  • Genes, myc
  • Genomics / methods*
  • Humans
  • Models, Statistical*
  • Mutation
  • Oncogenes
  • Repressor Proteins
  • Survival Analysis
  • Transcription Factors

Substances

  • DNA-Binding Proteins
  • Repressor Proteins
  • TRPS1 protein, human
  • Transcription Factors