We report on the photophysics of N,N'-di(t-butoxycarbonyl)indigos (tBOC indigos), finding that reversible photochemical trans-cis and cis-trans isomerization reactions proceed with high quantum yields (0.10-0.46). Absorption of wavelengths in the 500-600 nm region induces trans-cis isomerism, while blue light leads to the reverse cis-trans process. Like their parent indigos, trans-BOC indigos have low fluorescence yields (∼1 × 10(-3)), while the cis isomers have no measurable emission. These compounds are the first examples of photoisomerizable indigoid dyes in which photochemical isomerism effectively outcompetes radiative decay processes. Though indigo dyes typically have poor solubility in organic solvents, tBOC indigos can be dissolved at concentrations up to 8 w% in common organic solvents like acetone. Furthermore, unlike other photoisomerizable indigoids, tBOC indigos are not sensitive to quenching by proton and electron donors. These features, combined with high quantum yields of reversible photoisomerism induced by relatively low-energy photons (∼2 eV), make tBOC indigo derivatives potentially interesting for photochromic applications, such as photomechanically actuated materials.