Background: Quantification of geometric changes of the stent graft (SG) in abdominal aortic aneurysm has been required for follow up of endovascular aneurysm repair (EVAR). The aim was to develop an image-based modeling system (V-Modeler) to investigate these changes over time. METHODS AND RESULTS: V-Modeler was applied to investigate the migration of the SG. Three sets of computed tomography images were taken at 3 different times: (1) 5 days after the implantation; (2) 7 months later when the unilateral leg migrated upward; and (3) 10 months later when the limb had migrated into the common iliac aneurysm resulting in a type 1b endoleak. A spline function was used to represent the center lines of the SG to track its evolutional geometric changes in a three-dimensional manner. The characteristics of vascular geometry, as well as the SG geometry using geometric parameters such as length, curvature, torsion, angle of tangent vector (ATV), and migrated length, was evaluated. It was observed that the strong peak of the curvature in the distal area appeared, and a conversion of the torsion disappeared chronologically.
Conclusions: The V-Modeler was developed, which not only can extract vascular geometry but also can identify geometric parameter, such as curvature, torsion, and ATV, to predict adverse events following EVAR.