Microcatheter Shaping for Intracranial Aneurysm Coiling Using the 3-Dimensional Printing Rapid Prototyping Technology: Preliminary Result in the First 10 Consecutive Cases

World Neurosurg. 2015 Jul;84(1):178-86. doi: 10.1016/j.wneu.2015.03.006. Epub 2015 Mar 14.

Abstract

Objective: An optimal microcatheter is necessary for successful coiling of an intracranial aneurysm. The optimal shape may be predetermined before the endovascular surgery via the use of a 3-dimensional (3D) printing rapid prototyping technology. We report a preliminary series of intracranial aneurysms treated with a microcatheter shape determined by the patient's anatomy and configuration of the aneurysm, which was fabricated with a 3D printer aneurysm model.

Methods: A solid aneurysm model was fabricated with a 3D printer based on the data acquired from the 3D rotational angiogram. A hollow aneurysm model with an identical vessel and aneurysm lumen to the actual anatomy was constructed with use of the solid model as a mold. With use of the solid model, a microcatheter shaping mandrel was formed to identically line the 3D curvature of the parent vessel and the long axis of the aneurysm. With use of the mandrel, a test microcatheter was shaped and validated for the accuracy with the hollow model. All the planning processes were undertaken at least 1 day before treatment. The preshaped mandrel was then applied in the endovascular procedure. Ten consecutive intracranial aneurysms were coiled with the pre-planned shape of the microcatheter and evaluated for the clinical and anatomical outcomes and microcatheter accuracy and stability.

Results: All of pre-planned microcatheters matched the vessel and aneurysm anatomy. Seven required no microguidewire assistance in catheterizing the aneurysm whereas 3 required guiding of a microguidewire. All of the microcatheters accurately aligned the long axis of the aneurysm. The pre-planned microcatheter shapes demonstrated stability in all except in 1 large aneurysm case.

Conclusion: When a 3D printing rapid type prototyping technology is used, a patient-specific and optimal microcatheter shape may be determined preoperatively.

Keywords: Aneurysm; Coiling; Microcatheter shaping; Rapid prototyping; Three-dimensional printing.

Publication types

  • Case Reports
  • Technical Report

MeSH terms

  • Aged
  • Catheterization
  • Embolization, Therapeutic*
  • Endovascular Procedures / instrumentation*
  • Endovascular Procedures / methods*
  • Equipment Design
  • Female
  • Humans
  • Imaging, Three-Dimensional*
  • Intracranial Aneurysm / surgery*
  • Intracranial Aneurysm / therapy
  • Male
  • Middle Aged
  • Printing, Three-Dimensional*