A key aspect of marine environments is elevated pressure; for example, ∼70% of the ocean is at a pressure of at least 38MPa. Many types of Bacteria and Archaea reside under these high pressures, which drive oceanic biogeochemical cycles and catalyze reactions among rocks, sediments and fluids. Most marine prokaryotes are classified as piezotolerant or as (obligate)-piezophiles with few cultivated relatives. The biochemistry and physiology of these organisms are largely unknown. Recently, high-pressure cultivation technology has been combined with omics and DNA recombination methodologies to examine the physiology of piezophilic marine microorganisms. We are now beginning to understand the adaptive mechanisms of these organisms, along with their ecological functions and evolutionary processes. This knowledge is leading to the further development of high-pressure-based biotechnology.
Copyright © 2015 Elsevier Ltd. All rights reserved.