Major depression and schizophrenia are associated with dysfunctions of serotoninergic and dopaminergic systems mainly in the prefrontal cortex (PFC). Both serotonin and dopamine are known to modulate synaptic plasticity. 5-HT1A receptors (5-HT1ARs) and dopaminergic type D1 receptors are highly represented on dendritic spines of layer 5 pyramidal neurons (L5PyNs) in PFC. How these receptors interact to tune plasticity is poorly understood. Here we show that D1-like receptors (D1Rs) activation requires functional 5HT1ARs to facilitate LTP induction at the expense of LTD. Using 129/Sv and 5-HT1AR-KO mice, we recorded post-synaptic currents evoked by electrical stimulation in layer 2/3 after activation or inhibition of D1Rs. High frequency stimulation resulted in the induction of LTP, LTD or no plasticity. The D1 agonist markedly enhanced the NMDA current in 129/Sv mice and the percentage of L5PyNs displaying LTP was enhanced whereas LTD was reduced. In 5-HT1AR-KO mice, the D1 agonist failed to increase the NMDA current and orientated the plasticity towards L5PyNs displaying LTD, thus revealing a prominent role of 5-HT1ARs in dopamine-induced modulation of plasticity. Our data suggest that in pathological situation where 5-HT1ARs expression varies, dopaminergic treatment used for its ability to increase LTP could turn to be less and less effective.