Endometrial cancer-associated mutants of SPOP are defective in regulating estrogen receptor-α protein turnover

Cell Death Dis. 2015 Mar 12;6(3):e1687. doi: 10.1038/cddis.2015.47.

Abstract

Increasing amounts of evidence strongly suggests that dysregulation of ubiquitin-proteasome system is closely associated with cancer pathogenesis. Speckle-type POZ protein (SPOP) is an adapter protein of the CUL3-based E3 ubiquitin ligase complexes. It selectively recruits substrates for their ubiquitination and subsequent degradation. Recently, several exome-sequencing studies of endometrial cancer revealed high frequency somatic mutations in SPOP (5.7-10%). However, how SPOP mutations contribute to endometrial cancer remains unknown. Here, we identified estrogen receptor-α (ERα), a major endometrial cancer promoter, as a substrate for the SPOP-CUL3-RBX1 E3 ubiquitin ligase complex. SPOP specifically recognizes multiple Ser/Thr (S/T)-rich degrons located in the AF2 domain of ERα, and triggers ERα degradation via the ubiquitin-proteasome pathway. SPOP depletion by siRNAs promotes endometrial cells growth. Strikingly, endometrial cancer-associated mutants of SPOP are defective in regulating ERα degradation and ubiquitination. Furthermore, we found that SPOP participates in estrogen-induced ERα degradation and transactivation. Our study revealed novel molecular mechanisms underlying the regulation of ERα protein homeostasis in physiological and pathological conditions, and provided insights in understanding the relationship between SPOP mutations and the development of endometrial cancer.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carrier Proteins / metabolism
  • Cell Line, Tumor
  • Cullin Proteins / metabolism
  • Endometrial Neoplasms / genetics*
  • Endometrial Neoplasms / metabolism
  • Endometrial Neoplasms / pathology
  • Estrogen Receptor alpha / genetics
  • Estrogen Receptor alpha / metabolism*
  • Estrogens / metabolism*
  • Female
  • Humans
  • Mutation
  • Nuclear Proteins / genetics*
  • Nuclear Proteins / metabolism
  • Proteasome Endopeptidase Complex / metabolism
  • Proteolysis
  • Repressor Proteins / genetics*
  • Repressor Proteins / metabolism
  • Ubiquitin-Protein Ligases / genetics
  • Ubiquitin-Protein Ligases / metabolism
  • Ubiquitination

Substances

  • CUL3 protein, human
  • Carrier Proteins
  • Cullin Proteins
  • ESR1 protein, human
  • Estrogen Receptor alpha
  • Estrogens
  • Nuclear Proteins
  • RBX1 protein, human
  • Repressor Proteins
  • SPOP protein, human
  • Ubiquitin-Protein Ligases
  • Proteasome Endopeptidase Complex