Tuberculosis (TB) outbreak occurred in a boarding middle school of China. We explored its probable sources and quantified the transmissibility and pathogenicity of TB. Clinical evaluation, tuberculin skin testing and chest radiography were conducted to identify TB cases. Mycobacterium tuberculosis isolates underwent genotyping analysis to identify the outbreak source. A chain-binomial transmission model was used to evaluate transmissibility and pathogenicity of TB. A total of 46 active cases were ascertained among 258 students and 15 teachers/staff, an attack rate of 16.8%. Genetic analyses revealed two groups of M. tuberculosis cocirculating during the outbreak and possible importation from local communities. Secondary attack rates among students were 4.1% (2.9%, 5.3%) within grade and 7.9% (4.9%, 11%) within class. An active TB case was estimated to infect 8.4 (7.2, 9.6) susceptible people on average. The smear-positive cases were 28 (8, 101) times as infective as smear-negative cases. Previous BCG vaccination could reduce the probability of developing symptoms after infection by 70% (1.4%, 91%). The integration of clinical evaluation, genetic sequencing, and statistical modeling greatly enhanced our understanding of TB transmission dynamics. Timely diagnosis of smear-positive cases, especially in the early phase of the outbreak, is the key to preventing further spread among close contacts.
Keywords: Chain-binomial transmission model; Genome sequencing; Outbreak; Transmission; Tuberculosis.
Copyright © 2015 Elsevier B.V. All rights reserved.